According to Joule or Ohmic heating principles (represented as VI or I²R), any conductive material generates heat, leading to a gradual temperature rise in both the conductor and its surroundings. Managing copper current density is critical to ensure reliable PCB performance and prevent overheating. This article explores key considerations, design guidelines, and tools like OrCAD X to optimize copper current density in PCB designs.
A Single-Sided PCB (also known as a Single-Layer PCB or One-Layer PCB) is the simplest and most cost-effective type of printed circuit board. As the name suggests, it has a single conductive layer (usually copper) on one side of the substrate, with the electronic components mounted on the opposite side.
A multilayer PCB is a printed circuit board that consists of more than two layers, typically at least three or more layers of conductive copper, separated by an insulating material (substrate). These layers are stacked and connected by vias, resulting in a compact and efficient PCB design.
A flexible printed circuit board (FPCB) is a type of PCB that can be bent or twisted to fit into specific spaces or conform to different shapes. Unlike rigid PCBs, FPCBs are made from flexible materials, such as polyimide, and are ideal for use in compact, complex, and high-performance electronic devices.
SMD (Surface-Mount Device) components and SMT (Surface-Mount Technology) stickers serve the same electrical functions. However, due to their small size, SMD components offer better electrical performance. Despite these advantages, not all components are available for surface mounting. High-end processors and large connectors like BGAs (Ball Grid Arrays) and PGAs (Pin Grid Arrays) often require mixed assembly modes due to their unique requirements.
When assembling a printed circuit board (PCB), components are mounted onto the board through one of two primary methods: Surface Mount Technology (SMT) or Through-Hole Technology (THT). Each method has distinct advantages and is suited to different applications depending on the project requirements.
Conformal coatings play a critical role in ensuring the longevity and reliability of printed circuit boards (PCBs). Whether designing electronics for consumer devices, automotive systems, or military applications, selecting the right conformal coating is essential.
In this article, we’ll dive into the essentials of power integrity, why it matters, and how you can manage it effectively in your PCB designs. Whether you’re new to PCB design or looking to improve your skills, understanding PI is a must for building reliable, high-performance electronics.
High frequency PCBs are specialized circuit boards designed to transmit signals over a gigahertz (GHz) frequency range, ensuring quick and reliable communication in devices ranging from military radar systems to smartphones.
In recent years, electronic products have become increasingly complex and integrated into people’s daily lives. However, there are still two popular methods for soldering electronic components together to build circuits:
Surface Mount Technology (SMT) for PCB Assembly
Through-Hole (PTH) PCB Assembly