Shenzhen KKPCB Technology Co., Ltd. (KKPCB) is a professional PCB and PCBA manufacturer dedicated to providing one-stop electronic manufacturing solutions. Specializing in high-difficulty, small to medium batch PCB and PCBA production, we focus on delivering high-precision, high-reliability products with fast turnaround times to meet customers’ complex design and technical requirements.

Gallery

Contacts

05, 258 Shenshan Rd, Longdong Community, Baolong St, Longgang Dist, Shenzhen, China

+86-177-4855-1367

Engineering Technology
PCB-Design-Verification-for-an-Automotive-radar-Sensor-System

China’s Key Position as the World’s Largest PCB Manufacturer

As the largest PCB manufacturer globally, China not only leads in production volume and technology but also continues to innovate. By increasing research and development investment and optimizing production processes, China’s PCB industry has gradually transitioned from low-end manufacturing to high-end production, especially excelling in areas such as high-frequency, high-speed, and high-precision applications. Meanwhile, China’s cost advantages, rich industrial chain resources, and mature supply chain management systems further solidify its dominant position in the global market.

PCB Manufacturing PCB Design/Layout
IBM-IoT-PCB

The Impact of IoT on PCB Design and Manufacturing

The Internet of Things (IoT) is revolutionizing industries worldwide, and its influence on Printed Circuit Board (PCB) design and manufacturing is profound. As IoT devices become more compact, efficient, and interconnected, the demand for innovative PCB designs has surged. This blog delves into how IoT is transforming PCB design and manufacturing, the challenges it poses, and the opportunities it presents.

Engineering Technology
PCB design

Essential Checkpoints for Final Stages of PCB Design

Inexperienced PCB designers often overlook critical checks in the later design stages, leading to issues like inadequate line width, misplaced silkscreens, and insufficient spacing near sockets. These errors can cause electrical or manufacturing issues, potentially requiring redesigns and increasing production costs. Below is a comprehensive list of essential PCB design checkpoints to ensure product quality and manufacturability.

Engineering Technology
Parasitic Elements in Package and Layout

How to optimize PCB design to maximize the performance of superjunction MOSFETs

Based on recent trends, improving efficiency is a key goal, and the trade-off of using slow switching devices for better EMI is not worth it. Superjunctions can improve efficiency in applications where planar MOSFETs struggle. Superjunction MOSFETs significantly reduce on-resistance and parasitic capacitance compared to traditional planar MOSFET technology. The significant reduction in on-resistance and reduced parasitic capacitance, while helping to improve efficiency, also produces fast switching transitions of voltage (dv/dt) and current (di/dt), forming high-frequency noise and radiated EMI.

Engineering Technology
Double-layer PCB board

How to distinguish whether a PCB is single-layer or double-layer?

When discussing wiring-related technologies, two issues will be discussed: What if management cannot use a double-layer board or a ground plane, but still needs to reduce the noise in the circuit? And how to design the circuit to meet the ground plane requirements? Generally speaking, the solution is to tell management that a ground plane is necessary if reliable circuit performance is to be achieved. The main reason for using a ground plane is that the ground impedance is low and it can reduce EMI to a certain extent. But if cost constraints prevent users from achieving what they need, some suggestions provided in this article, such as star networks and correct current return paths, can also slightly reduce circuit noise.

PCB Manufacturing
PCB material

Some Factors Affecting the Performance of Microstrip Patch Antennas

Microstrip patch antennas and their arrays may be rare but are the most widely used antenna form. They have a simple structure and can be formed by a dielectric, a metal conductor patch on the dielectric layer, and a ground plane. Even the dielectric in the middle can be an air structure. A typical microstrip patch antenna is made on a printed circuit board (PCB), and a fine line structure is etched on the conductive metal layer using a photocopying method

PCB Manufacturing
high-frequency PCB

Interpretation of Common Problems in High-Speed ​​and

Whether the signal quality will be affected depends on the method of adding test points and how fast the signal is. Basically, the additional test points (without using the existing vias (via or DIP pins) as test points) may be added to the line or a short line may be pulled out from the line. The former is equivalent to adding a very small capacitor to the line, and the latter is an additional branch