Over 10 years we help companies reach their financial and branding goals. Engitech is a values-driven technology agency dedicated.

Gallery

Contacts

411 University St, Seattle, USA

engitech@oceanthemes.net

+1 -800-456-478-23

PCB Manufacturing
Multi-Layer PCB

Experience Sharing in Multi-Layer PCB Impedance Line Routing

Impedance line routing in multi-layer PCBs is both an art and a science. Adhering to the principles of short lines, symmetry, equal length, and precise compensation ensures high-speed data transmission and robust device performance. By leveraging tools like the Polar Si9000 and applying best practices in design, engineers can effectively address challenges in modern PCB impedance routing.

Engineering Technology
High-Speed PCB

High-Speed PCB Design Guide 5: Noise Reduction Technology for DSP Systems

With the rise of high-speed DSPs (Digital Signal Processors) and peripherals, managing Electromagnetic Interference (EMI) has become a crucial aspect of design. In the past, issues of emission and interference were broadly referred to as EMI or RFI (Radio Frequency Interference). Today, these are part of a more nuanced area: Electromagnetic Compatibility (EMC), which encompasses both emission control and system immunity.

Engineering Technology
Multi-Layer PCBs

Enhancing Anti-Static ESD Function in PCB Design

In PCB design, effective ESD (Electrostatic Discharge) protection can be achieved through strategic layering, layout, and installation adjustments. ESD protection aims to shield delicate semiconductor chips from static electricity originating from humans, the environment, or even other electronic components, which can damage insulation layers, MOSFET and CMOS gates, PN junctions, and wiring. Here are some recommended techniques to enhance ESD protection in PCB designs.

Engineering Technology
Electromagnetic Compatibility (EMC) Design in PCB Boards

Electromagnetic Compatibility (EMC) Design in PCB Boards

As electronic products become more advanced, they encounter more sources of electromagnetic interference (EMI) that can disrupt device function and potentially harm health. This guide explores strategies for designing PCB boards with optimized electromagnetic compatibility (EMC), focusing on reducing interference and increasing product resilience.

PCB Assembly
PCB layout

PCB Layout Best Practices: Essential Design Considerations for Reliable Electronic Products

PCB design translates electrical schematics into a functional product, and its quality directly impacts production efficiency and product reliability. For beginners, mastering PCB layout can be challenging despite familiarity with design software, and common issues often arise. Here, seasoned engineers from KKPCB share their PCB layout insights to help avoid these pitfalls and inspire best practices.

PCB Assembly
PCB Stackup

About PCB Layer Stackup

PCB layering or stacking is a way of stacking multiple printed circuit boards together while ensuring that there are predefined interconnections between them, allowing multiple printed circuit boards to be installed in the same device. These multi-layer PCBs can multiply the speed and functionality of a device and are composed of at least three conductive layers, with the bottom layer being composited with an insulating board