Shenzhen KKPCB Technology Co., Ltd. (KKPCB) is a professional PCB and PCBA manufacturer dedicated to providing one-stop electronic manufacturing solutions. Specializing in high-difficulty, small to medium batch PCB and PCBA production, we focus on delivering high-precision, high-reliability products with fast turnaround times to meet customers’ complex design and technical requirements.

Gallery

Contacts

05, 258 Shenshan Rd, Longdong Community, Baolong St, Longgang Dist, Shenzhen, China

+86-177-4855-1367

PCB Manufacturing
LTCC Substrate

Features of KLC Series (LTCC Substrate)

Low dielectric loss characteristics (tan δ) and low resistance conductors, low electrical loss, suitable for high-frequency applications
Due to our unique manufacturing technology, the size and characteristics of each production batch and within each batch vary little
High-density wiring is achieved by improving stacking alignment accuracy
Precise control of substrate thickness and cavity shape
Resistance, inductance, and capacitance functions are built into the substrate and package

PCB Manufacturing
Multilayer board

Basic Principles and Operations of PCB Wiring

With the rapid development of high-speed circuit design, PCB routing has evolved beyond simple interconnection tasks. Engineers must analyze various distributed parameters using transmission line theory. Distributed parameter circuits account for spatial variations in voltage and current. Modern PCBs, with their complexity and density, include advanced features like microvias, buried/blind vias, and embedded components (e.g., resistors, capacitors). These advancements require PCB designers to understand production processes deeply and adapt their designs to manufacturing constraints.

PCB Manufacturing
Multilayer board

High-Speed PCB: Optimal Six-Layer Board Structure

When designing high-speed PCBs, the layer stack-up plays a crucial role in ensuring signal integrity, minimizing crosstalk, and achieving optimal electromagnetic compatibility (EMC). For a standard six-layer board with a thickness of 1.6mm, selecting the right structure can significantly impact performance. Below is an analysis of common six-layer board structures and their suitability for high-speed designs

PCB Manufacturing
Multi-Layer PCB

Experience Sharing in Multi-Layer PCB Impedance Line Routing

Impedance line routing in multi-layer PCBs is both an art and a science. Adhering to the principles of short lines, symmetry, equal length, and precise compensation ensures high-speed data transmission and robust device performance. By leveraging tools like the Polar Si9000 and applying best practices in design, engineers can effectively address challenges in modern PCB impedance routing.

PCB Manufacturing
Multi-Layer PCB

The Critical Issue of Near Holes in Multi-Layer PCB Design

Closely spaced vias are a common design challenge in multi-layer and high-speed PCB boards. Understanding the implications of tight spacing—such as drilling process inefficiencies, reduced solder ring size, and long-term reliability concerns—is essential. By adhering to recommended spacing guidelines, optimizing via placement, and collaborating with manufacturers, designers can enhance production yield, reduce costs, and ensure robust product per