Shenzhen KKPCB Technology Co., Ltd. (KKPCB) is a professional PCB and PCBA manufacturer dedicated to providing one-stop electronic manufacturing solutions. Specializing in high-difficulty, small to medium batch PCB and PCBA production, we focus on delivering high-precision, high-reliability products with fast turnaround times to meet customers’ complex design and technical requirements.

Gallery

Contacts

05, 258 Shenshan Rd, Longdong Community, Baolong St, Longgang Dist, Shenzhen, China

+86-177-4855-1367

Engineering Technology
Ball Grid Array Technology Overview

Ball Grid Array Technology Overview

A ball grid array (BGA) is a type of surface-mount packaging that features an array of small solder balls on the underside, which serve as electrical connections to the printed circuit board (PCB). Unlike dual in-line or flat packages, ball grid arrays offer the advantage of accommodating a greater number of interconnection pins, made possible by utilizing the entire bottom surface of the device for connections instead of only relying on the perimeter

Engineering Technology PCB Manufacturing
Materials for High Temperature PCBs

Materials for High Temperature PCBs

a PCB will operate in a high ambient temperature environment, and the board needs to remove heat from components to prevent even higher temperatures from being reached in the system. Active cooling measures are important for aiding heat flow, but not all products can accommodate active cooling. Instead, designs can rely on passive cooling that relies on choosing the right PCB materials.

Engineering Technology PCB Manufacturing
Ceramics Used in Electronic Applications

Ceramics Used in Electronic Applications

Ceramics used in electronics are everywhere. For instance, ferroelectrics are used to create high-dielectric capacitors and non-volatile memory devices. Ferrites play a crucial role in storing data and information. Solid electrolytes are instrumental in the storage and conversion of energy. Piezoelectrics are essential for sonar technology, while semiconducting oxides have been pivotal in monitoring environmental conditions.

Engineering Technology
Sensors and Transducers in Your PCB Design

Sensors and Transducers in Your PCB Design

Sensors and transducers play integral roles in PCBs by enabling electronic systems to interact with and respond to the surrounding environment. Sensors detect physical parameters such as temperature, pressure, light, and motion, converting these analog signals into electrical signals that PCBs process. Sensors are used in various applications, from environmental monitoring and industrial automation to consumer electronics.

Engineering Technology PCB Design/Layout
PCB Routing

PCB Routing: Best Practices for Ensuring Signal Integrity and Performance

Printed Circuit Board (PCB) routing is a critical aspect of electronic design, ensuring that electrical signals are transmitted efficiently and reliably between components. Proper routing minimizes interference, maintains signal integrity, and meets design requirements such as impedance control and thermal management. This article outlines the best practices for PCB routing, focusing on optimizing performance and ensuring signal integrity.

PCB Design/Layout Engineering Technology
Optimizing PCB Trace Thickness vs. Current Capacity

Optimizing PCB Trace Thickness vs. Current Capacity

The relationship between PCB trace thickness and current capacity is a critical aspect of PCB design. Properly sizing traces ensures that they can handle the required current without overheating, which is essential for the reliability and functionality of the circuit. This article explores the key considerations for selecting trace thickness, the impact of copper weight, and methods for calculating current capacity, along with design strategies for high-current applications