Over 10 years we help companies reach their financial and branding goals. Engitech is a values-driven technology agency dedicated.

Gallery

Contacts

411 University St, Seattle, USA

engitech@oceanthemes.net

+1 -800-456-478-23

Engineering Technology
Multi-Layer PCBs

Enhancing Anti-Static ESD Function in PCB Design

In PCB design, effective ESD (Electrostatic Discharge) protection can be achieved through strategic layering, layout, and installation adjustments. ESD protection aims to shield delicate semiconductor chips from static electricity originating from humans, the environment, or even other electronic components, which can damage insulation layers, MOSFET and CMOS gates, PN junctions, and wiring. Here are some recommended techniques to enhance ESD protection in PCB designs.

Engineering Technology
PCB Copy Board

How to Overcome Challenges in PCB Copy Board Design in the Intelligent Era

With the advancement of policies by the National People’s Congress and the Chinese People’s Political Consultative Conference supporting entrepreneurship and innovation, the electronics industry has been rapidly transforming, propelling us into the intelligent era. In this context, upgrading PCB copy board design technology has become essential. With the expansion of the smartphone and tablet markets, the rise of portable devices, and the development of emerging vehicle-mounted, medical, and access equipment markets, products need to be slimmer and lighter, support higher communication speeds, perform multiple functions simultaneously, run on long-lasting batteries, and reach the market faster than competitors. These evolving demands pose new challenges for PCB copy board design and manufacturing in the intelligent era.

Engineering Technology
PCB circuit layout

IC Replacement Skills in PCB Circuit Design

Practical Tips for Non-Direct Replacement

Double-check pin numbering to avoid miswiring.

Adjust external PCB components to suit the replacement IC’s characteristics.

Match power supply voltage; if it differs, adjust accordingly.

Measure IC’s static working current post-replacement for normal values; significant differences may indicate self-oscillation.

Match input and output impedance to the original PCB circuit.

Maintain tidy external leads and avoid crossings to prevent high-frequency oscillation.

Engineering Technology
Parasitic Elements in Package and Layout

How to optimize PCB design to maximize the performance of superjunction MOSFETs

Based on recent trends, improving efficiency is a key goal, and the trade-off of using slow switching devices for better EMI is not worth it. Superjunctions can improve efficiency in applications where planar MOSFETs struggle. Superjunction MOSFETs significantly reduce on-resistance and parasitic capacitance compared to traditional planar MOSFET technology. The significant reduction in on-resistance and reduced parasitic capacitance, while helping to improve efficiency, also produces fast switching transitions of voltage (dv/dt) and current (di/dt), forming high-frequency noise and radiated EMI.